
IT’S TIME TO COME CLEAN ABOUT COOKING

Constructing Machine Learning Models for Social Welfare Targeting in South
Africa to Predict Whether Households Use Clean or Dirty Cooking Fuel

ABSTRACT

Toxins from dirty cooking fuels kill more people than malaria every year, predomi-
nantly affecting women and children (Whiting, 2021). Governments could intervene
to provide households with clean, safe alternatives, but typically lack the ability to
identify which households need alternatives. I use South Africa’s DHS survey data
to build machine learning models that predict which households use dirty and clean
fuels. I begin by restructuring the data and analyzing the relationships between vari-
ables with principal component analysis and multiple components analysis. Next, I
construct four models: a KNN model, a support vector machine model, a logistic
regression model built with forward selection, and an ensemble model that aggregates
the predictions of the previous three models. The logistic regression model performs
best on test data with an error rate of 17.72%. These models serve as a foundation
for future analysis and provide proof of concept for cooking fuel welfare applications.
This novel application of machine learning draws attention to the power of predic-
tive modeling in combating persistent health threats and provides resource-limited
governments with a means of targeting their welfare interventions.



1 Introduction
1.1 Background
One of the most dangerous threats women face lives in the
kitchen: cooking stoves. One-third of all people globally de-
pend upon dirty cooking fuels like biomass and coal (Whiting,
2021). This problem is most acute in low and middle-income
countries (LMICs), where two million people burn wood, crop
byproducts, dung, and other biomass as their primary energy
source (Mudway et al., 2005). The use of dirty cooking fuel
has significant implications for women’s and children’s health:
“worldwide, indoor air pollution is the single largest environ-
mental risk factor for female mortality and the leading killer
under the age of five” (Perez, 2019, pg. 152). When a tradi-
tional stove is used in an unventilated room, it releases toxic
fumes that have the equivalent impact on the cook as smoking
over 100 cigarettes (Perez, 2019, pg. 152). These fumes are as-
sociated with 3.8 million deaths caused by cancer, pneumonia,
and other diseases each year, killing more people than Malaria
(Whiting, 2021). 753 million people in Africa, which is 80%
of the population, still predominantly rely upon biomass to
fuel their cooking (Whiting, 2021; Perez, 2019, pg. 152).

South Africa exemplifies how economic development has
left millions of people behind and perpetuated the legacy of
dirty cooking fuels. South Africa’s stark economic divides
are borne from a dual economy. One part of the economy is
globalized, modern, highly productive, and wealth-producing,
while the other contains the poorest urban and rural South
Africans, has not significantly benefited from technological
advancements, and is unable to produce its own growth (Bo-
jabotseha, 2011). The country’s Gini Coefficient was 0.67
in 2018 and 25% of South Africans were still living in food
poverty in 2020 (WorldBank, 2023; EquityBrief, 2023). De-
spite its historic progress in poverty reduction, South Africa
has experienced increases in poverty in recent years (Equity-
Brief, 2023). Although South Africa has many resources as a
country, it still needs targeted interventions to reduce poverty
and merge the dual economy into a single, functioning whole.

Impoverished households in the marginalized economy are
likely to cook using traditional stoves with biomass fuel. The
World Bank estimates that 13% of the South African pop-
ulation lacks access to clean cooking fuels and technologies
(WorldBankData). This mixed composition of fuel use makes
South Africa a viable focus for cooking fuel analysis. More-
over, its relative abundance of financial resources indicates
that it may have the capacity to implement a widespread solu-
tion if it could identify which households cook with dirty fuel.
This paper implements machine learning methods to develop
a comprehensive model for the identification of households
burning clean and dirty cooking fuels in South Africa.

1.2 Machine Learning in Welfare Targeting
Governments of LMICs often have the most severe resource
limitations and the weakest bureaucratic infrastructure. They
lack the administrative data on income and wealth that is
needed to target who should receive welfare goods (Aiken
et al., 2023). Government aid is often distributed with lit-
tle accuracy and overextends to those who do not need it.
Poor targeting of social programs limits the scale of poverty-
reduction efforts; countries with the most need have the least
capacity to ameliorate poverty.

Machine Learning is a necessary tool in economic develop-
ment because it compensates for deficiencies in administrative
data. Machine learning enables researchers to build models
that predict households’ need based on their observed char-
acteristics. Aiken et al. (2023) developed a model for target-
ing households in need of financial support in Afghanistan.

They used data on cell phone ownership, call frequency, call
duration, and texting to build a model that identifies which
households are ”ultra poor.” The main model applied gradient
boosting with 10-fold cross-validation. This model was almost
as accurate as targeting using data from household surveys on
consumption and wealth. It performs faster and at a lower
cost than an administrative data collection program. Machine
learning enables dynamic, reactive government interventions.

Sansone and Zhu (2020) demonstrate how machine learn-
ing methods can predict which households will continue need-
ing income support. They use Australian social security data
and produce a model that is at least 22% more accurate than
existing heuristics and early warning systems.

1.3 Goal

This paper’s approach is similar to Aiken et al. (2023), as
it relies on survey data to avoid potential gaps in adminis-
trative data. It uses known household characteristics to pre-
dict which households use dirty cooking fuel. South Africa’s
government could use a similar machine learning model to
distribute clean cooking fuel and stoves to these households,
reducing the morbidity and mortality of women and children.

2 Data Collection & Description
2.1 Data Source

This analysis uses data from The Demographic and Health
Surveys (DHS) Program’s 2016 survey in South Africa. DHS
surveys are nationally representative and survey between
3,000 to 30,000 households (DHS). Please reference Appendix
A for additional details on the selection of survey year 2016.

This analysis utilizes the DHS’s Household Member Re-
code (HMR) file. DHS HMR files use standardized data defi-
nitions across countries. The HMR is organized by household
and includes an observation for each household member. The
2016 South Africa HMR has 38,850 observations and 11,083
unique households. It includes 441 individual and household-
level variables covering topics such as health, housing, assets,
household demographics, fertility, and language.

2.2 Data Restructuring

I restructured the DHS survey data so that each observation
is a household instead of an individual. I began by extract-
ing a list of the unique household IDs. Each household ID is
composed of two numbers that, when combined, may match
another household ID in the sample. To avoid losing unique
observations with the same numeric ID, I collapsed the house-
holds across a set of 15 continuous, binomial, and multinomial
categorical variables. The chance of two households having
the same numeric ID and combination of all 15 variables is
near zero. I dropped households with ”NA” responses, result-
ing in a 16-variable data frame of 10,722 households.

The data included 12 categories for the fuel type vari-
able. I recoded these response categories in two ways, both of
which are presented in Appendix B. First, I split the 12 cat-
egories into 7 broader categories and dropped the category
for ”Other” because it is neither ”clean” nor ”dirty.” This
facilitates the creation of a model that predicts each house-
hold’s primary fuel type. Second, I produced a new response
variable that codes each fuel as ”clean” or ”dirty.” This bi-
nary response variable provides less information but results
in a more precise, simpler model. It also distills to the core
of what a government would want to know about each house-
hold: does this household need a welfare cooking intervention?
Through this process, I determined that 2,061 households in
the dataset use dirty cooking fuel. Please reference Appendix
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C for a discussion of why this observed frequency is greater
than the World Bank’s estimate.

Next, I cleaned the 14 independent variables1 by relabeling
rare survey responses as ”other.” My threshold for counting
as ”rare” was being in 10 or fewer recorded responses. Col-
lapsing the data to the household level and consolidating the
response variable resulted in a DHS-derived dataset of 10,722
households and 17 variables. Please reference Appendix D for
a list of the 17 variables and their descriptions.

3 Exploratory Data Analysis

This section explores associations between the models’ 14 in-
dependent variables. Continuous and categorical variables are
considered separately due to differences in variance structure.

3.1 Principal Component Analysis (PCA)
There are three continuous variables in this report’s models.
They are the number of eligible women, number of eligible
men, and number of people in each household. I scaled and
centered all three variables and then conducted a PCA analy-
sis. Figure 1 in Appendix E provides the biplot and screeplot.

The biplot in Panel A indicates there is a positive correla-
tion between variables hv009 (number of household members)
and hv010 (number of eligible women in the household). Sur-
prisingly, this is not the case for hv011 (number of eligible men
in the household). The vector hv011 forms an approximately
90°angle with the other vectors, indicating that the number
of eligible men is not closely associated with the number of
eligible women or total number of people in each household.
This result is informative because it implies that the number
of eligible men may provide unique information and confirms
that it may be valuable to include the eligibility data for both
sexes, but not necessarily informative to have a variable for
both the number of eligible women and household size.

The screeplot in Panel B of Figure 1 displays the propor-
tion of total variance explained by each principal component.
There is not a clear spectral gap. The y-axis begins at 0.5; al-
though the amount of variance explained decreases with each
additional principal component, all three components main-
tain explanatory power. This reflects a core limitation of this
PCA analysis. The use of three continuous variables means
the analysis has fewer relationships to discern and is less in-
formative. The following analysis of the categorical variables
provides insight on the binomial variables.

3.2 Multiple Correspondence Analysis
(MCA)

I use MCA to asses the binomial variables. Similar to PCA,
MCA finds the associations between variables. It also groups
observations by their similarities. This analysis focuses on the
associations between variables.

Figure 2 in Appendix F illustrates the relationships be-
tween the binomial variables. The variables that are 180°apart
are negatively correlated, while those that are proximate to
each other have a similar profile. hv225 0 and hv243a 1 are
near each other which means that households that share a
toilet with at least one other household are similar to those
that lack a mobile phone. Moreover, households with a male
household head (hv219) have a similar profile to households
in urban areas (hv025). This may reflect how cultural norms
vary on different sides of the South African dual economy.

hv237 0 and hv243c 0 are close to each other and the ori-
gin. This indicates that households without an animal-drawn
cart have similar profiles to those that do not do anything to

clean or purify their water prior to drinking. Both variables
may proxy for wealth, which could explain their association
and why they are negatively associated with having a mobile
telephone (hv243a 1). Distance to the origin describes how
well-represented a variable is by the factor map. Variables
near the origin, such as the three discussed in this paragraph,
are well-represented by the MCA so there is more confidence
in their associations than if they were distant.

4 Statistical Models

This report produces and compares three predictive models
and an ensemble model with majority voting. All models are
supervised and predict categorical fuel types.

4.1 K Nearest Neighbors (KNN)

KNN analysis plots each household in n-dimensional space
and predicts labels based on the most common label among
each new point’s k closest ”neighbors.” Changing k alters the
prediction accuracy. When k is high, the decision boundary
is smooth and variance is low. When k is small, bias falls
and variance increases. This paper’s KNN models have high
dimensionality because there are 14 independent variables.

I constructed two KNN models. The first model has seven
response variables and predicts the specific type of cooking
fuel that each household uses, while the second simply pre-
dicts if the fuel is clean or dirty. I began by tuning the value
of k for each model. I used ten-fold cross-validation to assess
which value of k produced the smallest average 0-1 loss.

The optimal neighborhood size for the seven-category re-
sponse variable was 19. Training error was 22.81% and test
error was 23.82%. In comparison, the optimal neighborhood
size was 15 for the two-category response variable. Train-
ing error was 17.79% and test error was 18.55%. The model
with two response categories outperformed the more complex
model. This is expected because there are fewer concerns with
data scarcity and only one way to mislabel each observation,
rather than six. See Figure 3 in Appendix G for a visual-
ization of how training error changed with neighborhood size
in the tuning process and a comparison of the testing and
training error at each model’s optimal neighborhood size.

The seven-category KNN model is limited because the
large neighborhood size k. Labels that appear close to the
number of times as the size of k will not be assigned un-
less they are clustered closely in n-dimensional space and can
form a majority. As a result, the model only predicted three
fuel types in the test data: biomass (129), electricity (2,007),
and kerosene (9). The true frequencies in the test data were:
biomass (309), coal (19), electricity (1,602), gas (97), kerosene
(109), no cooking (7), and solar (2). This model underesti-
mates the number of households in need of a welfare inter-
vention due to the relative scarcity of dirty fuels in the data
compared to the dominant presence of electricity. Sparsity
is a limitation of KNN that prevents complex models from
converging to a test error of 0 when the sample size is fixed.
The model over-predicts the most common responses and is
unable to predict the more ”rare” responses.

4.2 Support Vector Machines (SVM)

Support Vector Machines (SVM) find a hyperplane in n-
dimensional space that classifies the data points using hinge
loss and support vectors, which are the data points near the
decision boundary that determine its positioning.

I built a non-linear SVM model. I selected a non-linear
boundary because of the high dimensionality of my data

1This excludes the household ID variable and both new variables for fuel type.
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and because a non-linear boundary can produce a linear-like
boundary if such a shape minimizes loss. All multinomial
categorical variables were translated into binomial variables,
which resulted in 41 independent variables being input into
the SVM model. I tuned the radial kernel by testing a series
of cost and γ values, applying 10-fold cross-validation to eval-
uate model performance at each combination of values, and
selecting the combination with the lowest loss.

I tested 112 combinations of cost and γ in the tuning pro-
cess; the optimal γ = 0.05 and the optimal cost = 0.5 with
3,846 support vectors. Figure 4 in Appendix H illustrates the
test error misclassification rate as a function of γ and cost.

Figure 4’s darkest regions correspond to the combinations
of cost and γ that minimize test error. The top left of the
graph is the region with the optimal combination of cost and
γ in the training data. This region is roughly the third dark-
est color and not an optimal combination of cost and γ for
the test data. This is reflected in the test data’s relatively
large decrease in performance compared to the training data.
Relative to KNN, logistic regression, and the ensemble, SVM
had the largest gap between its training and test performance.
The training error was 16.15% and the test error was 18.69%.
This reflects the bias-variance tradeoff. The model with the
lowest bias has the lowest performance on outside data.

4.3 Logistic Regression
I constructed two logistic models to predict which households
use clean and dirty cooking fuel.

First, I built the independence model, which assumes that
each variable’s effect does not vary by the level or value of
any other. View the model specification in Appendix I. I
evaluate the independence model by conducting a likelihood
ratio test. I regressed the dependent variable on 1 and cal-
culated the test statistic F = 2(L1 − L0) = G2(M0|M1). H0

is that the explanatory variables are independent of each ob-
servation’s dirty/clean classification. HA is that they are not
independent. The F statistic, which describes the difference in
deviance between the null and alternate models (joint signifi-
cance of the explanatory variables), is 2,177.3 with a p-value
of 2.2e-16. Thus, there is nearly a 0% chance of observing
this F statistic when the null is true. We can reject the null
of independence and explore more complex models. The in-
dependence model has 16.57% training error and 17.76% test
error. A more complex logistic model may perform better.

I use forward selection to construct a more complex model.
Forward selection starts with the null model regressed on 1
and adds terms until adding new terms no longer improves
the model. I use AIC to adjudicate which terms to add. View
Appendix J for the forward selection model.

The forward selection model utilizes interaction terms,
suggesting there are homogenous associations between some
variables. It omitted some variables that the exploratory data
analysis suggested had high correlations with other variables.
For example, the variable hv011 (number of eligible women in
the household) was omitted, which is unsurprising given its
high correlation with household size in the PCA analysis.

Foward selection was limited in its application due to the
large volume of variables and their many categories, prevent-
ing R from completing the process. Please reference Appendix
K for analysis on the significance of this limitation. Addition-
ally, the high performance of this model led some predicted
probabilities to near 0 and 1. This forced forward selection to
terminate before converging, which results in higher bias and
underfitting; future research may benefit from exploring spec-
ifications that permit more complex specifications to produce
a more externally valid model.

Despite its limitations, the forward selection outperformed
the independence model. A likelihood ratio test between

the models produced an F statistic of 87.25 with a p-value
of 5.792e-15, allowing the rejection of H0 that the indepen-
dence model is an adequate fit compared to the more complex
model. Training and test error are slightly reduced. Training
error is 16.49% and test error is 17.72%. Thus, the second,
more complex logistic model will be used in the ensemble.

4.4 Ensemble Model
Ensemble models pool predictions from multiple models.
They follow the ”wisdom of the crowd,” the idea that av-
eraging many guesses leads to an accurate response (Prelec
et al., 2017). In the context of machine learning, when mod-
els in the ensemble individually perform slightly better than
a random guess, their aggregated predictions can converge on
the truth. In this section, I combine the three previous mod-
els for predicting the binary categories ”clean” and ”dirty.” I
use majority voting and compare the ensemble model’s per-
formance to that of each individual model in Section 5.

Ensemble models aggregate the decisions of independent
(and often weak) learners. The models in this report uti-
lize the same subset of variables to generate their predictions.
This may interfere with the ensemble’s ability to produce
more accurate predictions than the individual models. Each
model should produce errors in a unique way, which allows
them to converge on the true value through majority voting.
If all models systematically under or overpredict the likelihood
of using dirty cooking fuel for the same types of households,
aggregating their predictions is of less value. The three mod-
els I combine in the ensemble all have comparable rates of
test error. Test error ranges from 17.72% to 18.69%, which
implies there is a possibility that they are predicting labels in
a similar fashion, and may be misclassifying observations of
the same profiles. Future analysis can develop this ensemble
by using different variables for each model and including more
models in the ensemble to maximize its performance.

5 Conclusion and Discussion
Table 3 in Appendix L displays each model’s test and training
misclassification rate. The logistic model performed best on
the test data, with the ensemble performing second best. Al-
though ensemble models are generally expected to outperform
their component pieces, this result is unsurprising due to the
limited number of models in the ensemble and the likelihood
of systemic/similar error between the three models.

Despite the KNN model’s lower performance, its non-
parametric nature allows its performance to improve indef-
initely as data is added. Thus, the KNN method can grow
more valuable as new data is collected and incorporated into
the models, which would likely be the case if these models
were used for welfare targeting.

Although these models have high test errors for their in-
tended purpose of welfare targeting, they serve as a foun-
dation for future analysis and provide proof of concept for
cooking fuel welfare applications. A main limitation of these
prediction models is in variable selection and the dimension-
ality of using multinomial categorical variables. Extensions
of this analysis could include additional work on shrinkage.
The forward selection process demonstrated that not all of
the selected variables were significantly beneficial in reducing
AIC, which indicates removing some variables could improve
performance; effective shrinkage could decrease variance. Ex-
tensions could also build a series of weak learners using meth-
ods like random forests to construct a stronger ensemble with
greater independence between the composite models. These
efforts can enhance governments’ ability to spread life-saving
cooking innovations, such as clean fuel and stoves, and save
lives with predictive modeling.
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Appendex

A Justifications for Selecting DHS Survey Data from 2016

2016 was selected because it is the most recent DHS South Africa survey year. DHS surveys were also administered in South
Africa in the years 2003 and 1998. These survey years were not included in this analysis due to the extent that technology and
demographics have changed. An effective targeting program should be based on the most recent data. Older DHS surveys
also include fewer variables and categories, which diminishes the potential utility of the models that use their data. In the
absence of high-quality, national-level administrative data, targeting could instead be applied at the state/district level or
variables could be approximated using phone data and additional machine learning techniques.

B Dependent Variables

Table 1: Consolidation of the Cooking Fuel Type Response Variable into Seven and Two Categories

DHS Category DHS Description Reclassification One Reclassification Two
1 electricity electricity 0 clean
2 lpg gas 0 clean
3 natural gas gas 0 clean
4 biogas gas 0 clean
5 kerosene/paraffin kerosene 1 dirty
6 coal, lignite coal 1 dirty
7 charcoal coal 1 dirty
8 wood biomass 1 dirty
9 straw/shrubs/grass biomass 1 dirty
10 agricultural crop biomass 1 dirty
11 animal dung biomass 1 dirty
12 electricity from generator electricity 0 clean
13 electricity from other source electricity 0 clean
14 solar energy solar 0 clean
95 no food cooked in house no cooking 0 clean
96 other - -

C Discussion of Difference Between the Share of Households Using Dirty
Cooking Fuel in South Africa According to DHS and World Bank

2,061 South African households in the DHS HMR data use dirty cooking fuel. This is approximately 19.19% of households
in the DHS sample, which is a 6 percentage point greater share of households using dirty cooking fuel than the 13% of
households that lack access to clean cooking fuels and technology according to the World Bank (WorldBankData). There are
many possible explanations for this difference. It is possible that households with access to clean fuel are not using it due to
barriers like cost, that the DHS survey data are less representative than expected or are now outdated, that the World Bank
data is not representative, or that this report’s definition of ”dirty” cooking fuel is broader than the definition used by the
World Bank.
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D All Variables

Table 2: Variables in Clean, Household-Level Dataset

Variable Description
1 hhid case identification
2 hv009 number of household members
3 hv010 number of eligible women in household
4 hv011 number of eligible men in household
5 hv025 type of place of residence
6 hv212 has car/truck
7 hv213 main floor material
8 hv215 main roof material
9 hv219 sex of head of household
10 hv221 has telephone (land-line)
11 hv225 share toilet with other households
12 hv226 type of cooking fuel
13 hv237 anything done to water to make safe to drink
14 hv243a has mobile telephone
15 hv243c has animal-drawn cart
16 sh141a type of dwelling

E PCA Biplot and Screeplot

Figure 1: PCA Analysis of Feature Correlations and Variance

(a) Biplot (b) Screeplot
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F MCA

Figure 2: MCA Variable Categories

G KNN Error

Figure 3: KNN Misclassification Rates
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H SVM Error

Figure 4: Test Data Misclassification Rate by Gamma and Cost Values

I Independence Model

logit[P (Y = dirty|X = x)] = hv009 + hv010 + hv011 + hv025 + hv219 + hv221 + hv225 + hv237+

hv243a+ hv212 + hv243c+ factor(hv213) + factor(hv215) + factor(sh141a)
(1)

J Foward Selection Model

logit[P (Y = dirty|X = x)] = factor(hv213) + hv025 + factor(sh141a) + hv009 + hv212+

factor(hv215) + hv243a+ hv243c+ hv221 + hv237 + hv219 + hv225 + hv025 ∗ hv009+
hv009 ∗ hv212 + hv025 ∗ hv219 + hv025 ∗ hv212 + hv025 ∗ hv221 + hv025 ∗ hv243a+
hv025 ∗ hv243c+ hv009 ∗ hv243a+ hv025 ∗ hv237 + hv212 ∗ hv221 + hv025 ∗ hv225

(2)

K Forward Selection Limitation

R could not run forward selection with a fully saturated model that has 14 multinomial and binomial variables. To solve
this problem, I permitted the forward selection model to build up to four-way interactions between the binomial variables
instead of a fully saturated model. The final model produced by forward selection did not have any interaction terms of the
fourth order, suggesting that AIC is minimized by a model with lower-order terms. This result suggests that not using the
fully saturated model was not of significant consequence. Forward selection would not include a fifth or higher order term
unless the lower order terms were present, which they are not.

L Model Performance

Table 3: Model Performance & Ranking by Test Error

Ranking Model Training Error Rate Testing Error Rate

Binomial Categorical
1 Logistic 16.49% 17.72%
2 Ensemble 16.29% 18.41%
3 KNN 17.79% 18.55%
4 SVM 16.15% 18.69%

Multinomial Categorical
– KNN 22.81% 23.82%
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